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Abstract. The high cost of providing “worst-case” solutions to global optimization problems has
motivated the development of “average-case” algorithms that rely on a statistical model of the ob-
jective function. The critical role of the statistical model is to guide the search for the optimum.
The standard approach is to define a utility functionu(x) that in a certain sense reflects the benefit of
evaluating the function atx. A proper utility function needs to strike a balance between the immediate
benefit of evaluating the function atx – a myopic consideration; and the overall effect of this choice
on the performance of the algorithm – a global criterion. The utility functions currently used in this
context are heuristically modified versions of some myopic utility functions. We propose using a new
utility function that is provably a globally optimal utility function in a non-adaptive context (where
the model of the function values remains unchanged). In the adaptive context, this utility function
is not necessarily optimal, however, given its global nature, we expect that its use will lead to the
improved performance of statistical global optimization algorithms. To illustrate the approach, and
to test the above assertion, we apply this utility function to an existing adaptive multi-dimensional
statistical global optimization algorithm and provide experimental comparisons with the original
algorithm.
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1. Introduction

We consider a class of global optimization methods that have two distinctive fea-
tures: (a) they assume or construct a statistical model of the objective function,
and, (b) they look for solutions that are good “on average” instead of considering
worst-case scenarios.

It is known that worst-case approaches to global optimization lead to algo-
rithms of exponential complexity. The appeal of average-case approaches is in the
possibility of obtaining algorithms that can work efficiently for typical problems
without paying a high premium for worst-case guarantees. A drawback of average-
case algorithms, on the other hand, is that they often require a larger amount of
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auxiliary computations to update the model of the objective function and to find
the best location for function evaluation. SeeZ̆ilinskas (1992) and Streltsov et al.
(1996) for further discussions.

The critical role of the statistical model is to guide the search for the optimum.
Typically, a utility function is defined that, in some sense, measures the potential
of each point or region in the domain of the function to yield large values (assume
we are maximizing). Then, at each iteration of the optimization algorithm, the next
location of the function evaluation is selected as that which maximizes the utility
function.

To make things more explicit, consider the following setting:
Let f : A → R be a real valued deterministic function defined on a bounded

setA ⊂ Rd , and consider the following maximization problem:

max
x∈A

f (x) (1)

Then, average-case algorithms typically work as follows:
Assume thatf is evaluated ast points{xi; i = 1, . . . , t} and let all observations

up to t be denoted byζt = {(xi, yi); i = 1, . . . , t} whereyi = f (xi). Let

F(y; x, ζt ) = P(f (x) ≤ y|ζt ). (2)

denote the conditional distribution off (x) givenζt . Given this model of the func-
tion values, a utility functionu(x; ζt ) is defined to reflect in a certain way the
“reward” of selectingx as the next location for function evaluation. The maxi-
mizer ofu(x; ζt ) is then chosen as the next point to evaluate the function. Different
approaches vary in their choice of the model for the objective function,F(y; x, ζt ),
and their choice of the utility functionu(x; ζt ). See, e.g.,̆Zilinskas (1992), Mockus
(1989, 1994), and Betrò (1991) for reviews of the existing methods.

Most algorithms use a number of simplifying assumptions in order to reduce the
computational complexity of the algorithm. One of these simplifications consists of
using a utility function that reflectsthe immediateor one-step reward of evaluating
the function at a pointx, while disregarding the effect of this choice on the overall
performance of the algorithm.

u(x; ζt ) = E[f (x)− Zt ]+, or, u(x; ζt ) = P(f (x) ≥ Zt), (3)

are examples of the utility functions considered (x+ denotes max(x,0), andZt =
max{y1, . . . , yt }).

Informally, we are interested in striking a balance between continuing the search
in areas where large function values have already been found (and, typically, the
expected function valuesE[f (x)] are large), and searching in areas that are not
sufficiently explored (and where, typically, Var(f (x)) is large). The utility func-
tions (3), however, take only the immediate effect of each function evaluation
into account and tend to ignore the unexplored areas, thus limiting the scope of
the search. This is a well-known drawback and different heuristic adjustment to
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the utility function have been proposed to compensate for it. Kushner (1964),
for example, proposed the following modified utility function in the context of
a one-dimensional search algorithm:

u(x; ζt ) = P(f (x) ≥ Zt + εt), (4)

where 0≤ εt < ∞ is a parameter of the algorithm. Whenεt is large, the search
is conducted in areas with large variance and whenεt → 0 the search becomes
local around the current best value,Zt . Algorithms ofZ̆ilinskas (1992) and Mockus
(1989) use essentially the same heuristic rule in order to make the multi-dimensional
search more global. Another approach is to “blow up” the variance of distribution
F(y) by a constant (see, e.g., Törn andZ̆ilinskas 1989).

We propose that an alternative utility function, denoted byz∗(x; ζt ), be used in
the above context. To specifyz∗(x; ζt ), we first re-define the optimization criterion
to include the cost of computations. Our objective then is to maximize the expected
total “reward” of the algorithm (that takes the cost of computations into account)
instead of finding the best function value after a fixed number of iterations of the
algorithm. More specifically, letc(x) denote the cost of evaluating the function at
x and other auxiliary computations. Then our objective is to maximize

E

[
max

1≤i≤T
{f (xi)} −

T∑
i=1

c(xi)

]
= E

[
ZT −

T∑
i=1

c(xi)

]
, (5)

whereT is a stopping time of the optimization algorithm, determined by the algo-
rithm itself.

In this context,z∗(x; ζt ) is defined as the solution to the following equation:

E[f (x)− z]+ = c(x), (6)

where the distribution off (x) is assumed to beF(y; x, ζt ). The existence and
uniqueness ofz∗(x; ζt ) are guaranteed under mild conditions.z∗(x; ζt ) is the value
at which the marginal benefit of evaluating the function atx is offset by the cost of
computation.

In Section 3 of the paper, we describe a non-adaptive setting in whichz∗(x; ζt ) =
z∗(x) provides the perfect guide for the search and the optimal search strategy is as
follows: The utility functionz∗(x) is calculated at all points where the function
is not yet evaluated. If max{z∗(x); x ∈ A − {x1, . . . , xt }} is greater than the
current highest value observed, i.e.,Zt , the next point for function evaluation is
the maximizer of{z∗(x); x ∈ A−{x1, . . . , xt }}. Otherwise the search is stopped at
t , i.e.,T = t . This search strategy optimizes (5). (In Section 3 we describe another
context in which usingz∗(x) as a utility function yields an optimal search strategy.)

Therefore, in the above non-adaptive setting,z∗(x) is a truly global utility func-
tion that takes into account the effect of selectingx as the next point for function
evaluation on the overall performance of the optimization algorithm. In cases where
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criterion (5) is not adopted as the objective to be optimized, the “cost” 0< c <∞
can be viewed as a parameter of the optimization algorithm, similar toε above.

Given the more global character of the utility functionz∗(x; ζt ) when compared
to the other utility functions specified above, we expect that by usingz∗(x; ζt ) one
can improve a number of existing optimization algorithms. To illustrate, we give
an example in Section 4 where such a modification ofZ̆ilinskas multi-dimensional
algorithmUNT is performed.

The rest of the paper is organized as follows: in Section 2 we describe the
statistical approach to global optimization. We discuss the new utility function
z∗(x; ζt ) in Section 3 and show how to apply this policy to the algorithmUNT
in Section 4. We present computational results in Section 5 and state conclusions
in Section 6.

2. Statistical global optimization

In statistical global optimization, one defines a statistical model that captures the
global behavior of the objective function without pre-defining its local behavior.
The model is updated as the function is evaluated at new points. In this context,
it is possible to define the “average efficiency” of the algorithm as the expected
optimal value found by the algorithm, given the model of the objective function.

It is often assumed thatf (x) can be modeled as a realization of a certain
stochastic process onA. At each iteration of the optimization algorithm, the condi-
tional distribution of the function values,F(y; x, ζt ), is determined based on the set
of all previous observationsζt = {(xi, yi), i = 1, . . . , t}. Gaussian models of the
objective functionf (x|ζt ) ∼ N(µ(x), σ (x)) with conditional meanµ(x|ζt ) and
conditional varianceσ 2(x|ζt ) are commonly used. The one-dimensional Brownian
motion model was proposed by Kushner (1964) and multi-dimensional algorithms
are presented in Törn and̆Zilinskas (1989) and Mockus (1991, 1994).

Given the conditional distribution functionF(y; x, ζt ), an auxiliary problem is
solved in order to find the point that maximizes a certain rational utility function
u(x; ζt ). A popular approach is to maximize a one-step expected reward

u(x; ζt ) = E[f (x)− Zt ]+, (7)

or the probability of selecting a point with a function value better than the current
maximumZt :

u(x; ζt ) = P(f (x) ≥ Zt). (8)

When utility functions (7) and (8) are used, selected points for function evalu-
ation tend to be close to the existing good points. For example, utility function (7)
leads to a policy that gives a large expected increase of the function value at the
next immediate step, but this policy may not perform well in the long run. In other
words, they are “myopic” utility functions.
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Various heuristics are proposed in order to make the search more global. Kush-
ner (1964) suggested using

u(x) = P(f (x) ≥ Zt + εt), (9)

where parameter 0≤ εt <∞ defines a trade-off between local and global search.
Whenεt is large, the search is conducted in areas with large variance; whenεt → 0
search becomes local around the current best valueZt . Therefore,ε should be
chosen large at the beginning of the search and small at the end. AlthoughZ̆ilinskas
(1989) gives more detailed recommendations based on extensive experimental re-
search, the exact choice ofεt is left with the user.

After the utility function is defined, the next point for function evaluation is
chosen as the solution of an auxiliary optimization problem

xt+1 = arg max
x∈A−{x1,... ,xt }

u(x; ζt ). (10)

In the one-dimensional case, the Brownian motion on the interval[a, b] ⊂ R

can be decomposed into independent processes in each of the subintervals between
previously sampled points[xi, xi+1]. Therefore,

max
x∈A−{x1,... ,xt }

u(x; ζt ) = max
i=1,... ,t−1

{ max
x∈(xi,xi+1)

u(x; ζt )}, (11)

where the maximum ofu(x; ζt ) in each of the subintervals can be found analyti-
cally for u(x; ζt ) defined according to (9).

In the multi-dimensional case, the computation of the full conditional distribu-
tionF(y; x, ζt ) becomes very expensive because the conditional distribution at any
point x depends on all previous observations. Approximate models are developed
that use the information from the neighboring points only. The maximum value of
u(x; ζt ) is usually found via a combination of random and local searches or via op-
timization over heuristically chosen subsets – such as line search between previous
sampled points (see, e.g., Stuckman 1988; Stuckman and Stuckman 1993).

3. An alternative utility function

Our approach is based on using an alternative utility function in the above statistical
global optimization context. To define this utility function, we first modify the
optimization criterion by introducing the cost of computations into the objective
function.

Let c(x) denote the computational cost of evaluating the function atx and other
auxiliary computations. Then our objective is to maximize

E

[
max

1≤i≤T
{f (xi)} −

T∑
i=1

c(xi)

]
= E

[
ZT −

T∑
i=1

c(xi)

]
, (12)
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whereT is an appropriate stopping time of the optimization algorithm. This cri-
terion was first suggested by Tang (1994) in the context of partitioned random
search.

The optimal solution to the above problem in the adaptive case is not known.
We consider the simpler non-adaptive case – when the model of function values is
not updated – and use the optimal solution of the non-adaptive case to construct a
heuristic solution for the original adaptive one.

Let F(y; x) be the distribution off (x). Assume that the current maximum
value isZt = z. Then, we can define a one-step expected reward of evaluating
the function atx as

R(x; z) = E[(f (x)− z)+] − c(x). (13)

R(x; z) is a non-increasing function ofz, and for large enoughz it becomes neg-
ative, i.e.,R(x; z) < 0. We definez∗(x) as the unique solution to the following
identity:

R(x; z∗(x)) = 0.

In other words,z∗(x) is the value for which the expected marginal benefit of eval-
uating the function atx is offset by the cost of computation. Under the following
assumptions, this value is a perfect guide for the search for the optimum.

• The setA is finite.
• The distribution of the function value atx, F(y; x), is known.
• The distributionsF(y; x), x ∈ A, are independent.

Assume that at each decision momentk we can do one more function evalu-
ation or stop the search. Weitzman (1979) considered this problem in some more
generality in the context of an optimal search for the best economic alternative and
proved that the following index policy based on the valuesz∗(x) is the optimal
policy (i.e., optimal solution to (12)).

• Stopping rule: Stop the search ifZt ≥ max {z∗(x); x ∈ A − {x1, . . . , xt }},
or if all points are examined, i.e.,{x1, . . . , xt } = A.

• Selection rule:If the stopping condition is not satisfied, evaluate the function
at the maximizer of{z∗(x); x ∈ A− {x1, . . . , xt }}.

In other words, in the non-adaptive finite case,z∗(x) is an optimal utility func-
tion. The assumption of finiteness ofA is not very restrictive: For any bounded
subset ofRd , we can construct a finite mesh that approximates the set very closely;
hence, we can approximate the original optimization problem by an optimization
problem on the approximating finite mesh.

In the adaptive case, where, at each step of the optimization algorithm, the
model of the function values is updated, we evaluate the utility function at each
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step based on the updated model, i.e., we evaluatez∗(x; ζt ) based onF(y; x, ζt ).
As we stated before, the resulting policy in the non-adaptive case is not necessarily
optimal. However,z∗(x; ζt ) is a somewhat more “global” utility function when
compared to the utility functions defined in Section 2, and we expect that using
z∗(x; ζt ) will improve the performance of the statistical global optimization algo-
rithms discussed in Section 2. To test this assertion we apply thez∗(x; ζt ) utility
function to an existing statistical global optimization algorithm in the next section.

REMARK. It is worth noting another context in whichz∗(x) is an optimal utility
function. Consider the following non-adaptive setting: Assume that sampling/func-
tion evaluation at eachx ∈ A yields a random rewardf (x) with distribution
F(y; x) at a costc(x) (A is assumed to be a compact set, not necessarily finite). In
this case, unlike what we discussed above, multiple sampling/function evaluation at
one point is possible, resulting in independent and identically distributed rewards.
Castanon et al. (1996) proved that, under suitable conditions, the optimal policy
(optimizing (12)) is to sample at the point that has the largestz∗(x) and to stop
sampling the moment a value larger than the largestz∗(x) is obtained. Moreover,
they showed that the optimal expected reward in this context is the largestz∗(x).

4. Application to multi-dimensional global optimization

As already mentioned, we propose to usez∗(x; ζt ) as a utility function in the
context of statistical global optimization algorithms; no other changes in the local
or global stages of the algorithm are required. To illustrate the approach, we use
z∗(x; ζt ) as a utility function in the context of the multi-dimensional axiomatic
statistical optimization algorithmUNT (Z̆ilinskas, 1992).

We describe the algorithm briefly: The statistical model is a Gaussian field on
the setA. Therefore, the distribution of the function valuef (x; ζt ) at staget of the
algorithm is Gaussian for allx ∈ A:

f (x; ζt ) ∼ N(µ(x; ζt ), σ (x; ζt )). (14)

To simplify the computations, the following approximate updating of the condi-
tional density was proposed by̆Zilinskas: The mean and variance off (x; ζt ) are
computed based on ther nearest neighbors ofx (r is a parameter of the algorithm)
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as follows:

µt(x; ζt ) =
t∑
i=1

yiwi(x; ζt ), (15)

σt(x; ζt ) = γt
t∑
i=1

||x − xi || wi(x; ζt ),

wi(x; ζt ) = d(x, xi)/
∑

j∈N (x)

d(x, xj ), i ∈ N (x), (16)

= 0, otherwise,

d(x, xi ) = exp(−v||x − xi ||2)/||x − xi ||,

whereN (x) is the set of indices of ther nearest neighbors ofx; wi(x; ζt ) defines
the relative weight of observationi at pointx, andv andγt are fixed parameters of
the model that need to be estimated (seeZ̆ilinskas (1992) for details).

Therefore,µ(x) is the weighted average of the existing function values{yi, i =
1, . . . , t}, weighted proportionally to an appropriately defined distance 0 between
x and xi ’s; σ (x) depends on the distance ofx from xi ’s in such a way that it
increases when moving further away from them.

Based on the above model,Z̆ilinskas proposed the following heuristic optimiza-
tion algorithm:
1. SampleN0 initial samples randomly fromA and estimate the parameters of the

modelγt andv.
2. Use a random search approach to find (approximately) the maximizer of the

utility function u(x; ζt ) = P(f (x) > Zt + ε); denote this value byx∗.
3. Evaluatey(x∗).
4. If y(x∗) and values atK points closest tox∗ form a concave set, assume that

the area around a local maximum is found, and generate a local search starting
from x∗. (K is a parameter of the algorithm.)

5. If a specified limit on the total number of points at which the function is eval-
uated or on the number of local searches is reached, stop.
Otherwise, go to step (2).

We propose to modify the above algorithm by changing the utility function to
u(x) = z∗(x). We assume thatc(x) = c, i.e., the cost of computations at all points
is identical, and usec as a parameter of the modified algorithm. In order to provide
a fair comparison between the two algorithms, we use the same stopping criterion
and local search procedures as the original algorithm.

Givenf (x; ζt ) ∼ N(µ(x; ζt ), σ (x; ζt )), we evaluate the utility functionz∗(x; ζt )
as follows:z∗(x; ζt ) is the solution of the equation

I (z;µ, σ ) = E [Y − z]+ = c,
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where the density ofY is f (x; ζt ). Note thatI (z;µ, σ ) = E [Y − z]+ can be
evaluated using a standard normal density:

I (z;µ, σ ) = E [Y − z]+ = σE ((Y − µ)/σ − (z − µ)/σ ) (17)

= σI ((z− µ)/σ );0,1),
where

I (z;0,1) =
∫ ∞
z

(1−8(p))dp = φ(z)− z(1−8(z)) (18)

(8,φ are, respectively, the distribution and density functions of the standard nor-
mal distribution.)

Therefore,

z∗(x) = I−1(c;µ(x), σ (x)) = µ(x)+ σ (x) I−1(c/σ (x);0,1) (19)

(see Rosenfield (1983) for a detailed discussion of computing the valuez∗(x) for
normal distribution).

We can tabulate values of the monotone functionI−1(c;0,1) in advance on a
discretized subset of[0,∞) of the form{nδc;n ≥ 0, δ > 0}. Therefore, computing
z∗(x) will require only one lookup to a sorted table{nδc, z∗(nδc;0,1)}.

5. Experimental results

In this section we provide experimental results to compare the performance of the
UNT optimization algorithm when (a) the original utility function is used, and (b)
this utility function is replaced byz∗(x; ζt ).

We modify the original FORTRAN algorithm by computing the utility function
according to (19). We use the local search procedures and the stopping rule that are
provided by the algorithmUNT without any modification.

We choose a sampling costc = 0.001. The maximum number of local minima
is set to 20. The maximum number of points at which the function is evaluated is
chosen to be 5000 (the stopping usually occurred earlier when the specified number
of local maxima were reached).

We ran the algorithm with different numbers of initial random pointsN0 =
30,100,and 1000. For each pair of runs, we started both methods with the same
set of initial random points. For each experiment, we report the average results of
100 independent replications – each replication starting from a new set of initial
random numbers. Test problems are taken mostly from Aluffi-Pentini et al. (1988)
and are described in Appendix A.

We compare the maximum valuesZT found by the two methods (Table 1) and
the total number of iterationsT (Table 2). We also compute the probability that the
modified method (usingz∗(x; ζt )) gives a strictly better result thanUNT in terms
of the maximum value or the number of iterations (Table 3).
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Table 1. ComparingUNT andz∗ methods: Final maximal values.

Function d N0 = 30 N0 = 100 N0 = 1000

UNT z∗ UNT z∗ UNT z∗
4-order poly 1 0.351 0.351 0.352 0.352 0.352 0.352

Gold 6 order poly 1 −7.002 −7.004 −7.002 −7.002 −7.0 −7.0

Shubert 1 12.866 12.871 12.871 12.871 12.871 12.871

4 order poly 2 0.303 0.133 0.266 0.270 0.335 0.336

1 row of local min 2 −0.141 −0.263 −0.141 −0.117 −0.027 −0.010

6-hump camel 2 1.016 0.996 1.007 1.009 1.028 1.029

Shubert,β = 0 2 141.3 179.8 184.07 184.10 186.48 186.23

Shubert,β = 0.5 2 124.4 160.7 168.3 168.7 181.4 180.2

Shubert,β = 1 2 100.1 152.9 155.3 153.7 180.8 177.5

3 ill-cond min,A = 10 2 −177.8 −1040 −13.16 −13.16 −0.334 −0.334

3 ill-cond min,A = 102 2 −32.059 −115.03 −21.227 −21.227 9.500 9.500

Goldstein-Price 2 −4.318 −8.033 −4.788 −4.788 −3.267 −3.271

Branin 2 −0.424 −0.469 −0.432 −0.427 −0.405 −0.400

Levy-Mont, 1, 10 2 −0.055 −0.022 −0.021 −0.017 −0.010 −0.006

Levy-Mont, 3, 10 2 −0.034 −0.065 −0.035 −0.032 −0.017 −0.011

Small global min 2 −640.6 −1843.1 −896.0 −896.0 −156.1 −156.1

Goldstein-Price 2 −4.318 −8.730 −5.129 −5.129 −3.369 −3.369

Rasn 2 1.868 1.951 1.975 1.955 1.994 1.978

Hartman 3 3.813 3.853 3.850 3.859 3.859 3.859

Levy-Mont, 1, 10 3 −0.595 −0.258 −0.167 −0.126 −0.089 −0.070

Levy-Mont, 3, 10 3 −0.163 −0.255 −0.161 −0.119 −0.085 −0.024

Shekel,M = 5 4 1.407 4.934 5.771 5.201 7.273 6.114

Shekel,M = 7 4 1.822 6.830 7.315 5.917 7.713 6.687

Shekel,M = 10 4 1.771 7.192 7.555 6.235 8.126 6.770

Levy-Mont, 1, 10 4 −1.537 −0.818 −0.678 −0.576 −0.236 −0.243

Levy-Mont, 3, 10 4 −0.828 −0.686 −0.561 −0.459 −0.262 −0.097

Rasn 4 1.334 1.481 1.437 1.581 1.711 1.730

Levy-Mont, 2, 10 5 −30.089 −24.976 −23.222 −24.792 −10.497 −10.155

Levy-Mont, 3, 5 5 −0.536 −0.367 −0.374 −0.264 −0.216 −0.032

1 cusp-shaped min 5 −89.822 −61.949 −59.702 −56.060 −46.628 −40.695

Small global min 5 −1117 −982.5 −738.1 −717.0 −386.1 −367.3

Hartman 6 2.730 3.120 3.133 3.226 3.210 3.268

Levy-Mont, 3, 5 6 −0.880 −0.594 −0.604 −0.433 −0.367 −0.055

Levy-Mont, 3, 5 7 −1.481 −0.996 −0.973 −0.656 −0.556 −0.086

Levy-Mont, 2, 10 8 −83.165 −68.691 −66.170 −65.751 −37.008 −33.276

Levy-Mont, 2, 10 10 −108.4 −93.996 −85.866 −82.972 −59.787 −59.651

Shekel,M = 10 10 0.079 0.238 0.155 0.262 0.278 0.350

Rasn 10 0.578 0.673 0.683 0.849 0.892 0.968



A NON-MYOPIC UTILITY FUNCTION FOR GLOBAL OPTIMIZATION ALGORITHMS 293

Table 2. ComparingUNT andz∗ methods: Number of iterations.

Function d N0 = 30 N0 = 100 N0 = 1000

UNT z∗ UNT z∗ UNT z∗
4-order poly 1 110.4 141.0 262.6 263.9 1432 1358

Gold 6 order poly 1 123.3 116.5 185.3 188.0 1174 1149

Shubert 1 343.6 166.6 237.5 256.9 1170 1192

4 order poly 2 196.0 131.1 310.9 303.4 1843 1735

1 row of local min 2 192.8 156.9 289.3 279.2 1305 1199

6-hump camel 2 196.0 176.6 366.1 340.0 1893 1513

Shubert,β = 0 2 354.7 387.3 548.0 527.1 1669 1542

Shubert,β = 0.5 2 355.6 387.1 545.8 510.1 1582 1450

Shubert,β = 1 2 350.5 350.8 496.3 442.6 1523 1434

3 ill-cond min,A = 10 2 304.4 243.9 423.8 423.8 2229 2229

3 ill-cond min,A = 102 2 302.4 245.0 425.2 425.2 2228 2228

Goldstein-Price 2 240.5 236.2 451.1 451.1 2319 2327

Branin 2 242.2 199.7 311.2 295.9 1384 1255

Levy-Mont, 1, 10 2 375.1 349.2 513.4 439.7 1508 1291

Levy-Mont, 3, 10 2 138.3 103.9 208.1 185.1 1412 1096

Small global min 2 129.9 102.9 195.3 195.3 1183 1183

Goldstein-Price 2 241.1 223.6 466.9 466.9 2344 2344

Rasn 2 338.0 313.8 567.3 392.6 1414 1378

Hartman 3 389.5 320.6 385.8 374.7 1312 1258

Levy-Mont, 1, 10 3 346.5 376.1 498.6 490.5 1933 1686

Levy-Mont, 3, 10 3 343.2 124.7 236.0 210.7 1226 1131

Shekel,M = 5 4 378.1 196.1 317.3 252.2 1244 1230

Shekel,M = 7 4 387.1 213.9 316.1 259.3 1255 1219

Shekel,M = 10 4 377.6 236.5 347.2 282.1 1265 1224

Levy-Mont, 1, 10 4 378.2 389.3 528.4 519.3 1863 1645

Levy-Mont, 3, 10 4 378.1 186.0 271.1 262.6 1263 1167

Rasn 4 377.1 414.3 549.6 608.8 2319 1597

Levy-Mont, 2, 10 5 381.3 386.4 508.4 508.5 1851 1812

Levy-Mont, 3, 5 5 376.3 274.7 334.8 323.1 1346 1207

1 cusp-shaped min 5 377.4 283.2 364.6 353.4 1218 1190

Small global min 5 383.1 237.3 311.9 310.2 1256 1266

Hartman 6 378.2 439.8 551.9 551.8 1443 1436

Levy-Mont, 3, 5 6 375.5 315.2 416.8 394.2 1475 1271

Levy-Mont, 3, 5 7 365.3 315.7 466.0 457.2 1606 1365

Levy-Mont, 2, 10 8 346.9 338.8 485.8 487.1 2135 2103

Levy-Mont, 2, 10 10 331.4 301.0 451.9 451.8 2175 2139

Shekel,M = 10 10 346.6 479.6 503.2 583.0 1656 1570

Rasn 10 332.4 361.2 462.9 599.0 2244 1803
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Table 3. ComparingUNT and z∗ methods: Percentage of runs whenz∗
performed better thanUNT .

Function d In z∗ In iterations

N0 : 30 100 1000 30 100 1000

4-order poly 1 46 30 36 13 47 91

Gold 6 order poly 1 39 45 96 57 50 68

Shubert 1 81 73 96 100 38 34

4 order poly 2 10 43 44 90 58 83

1 row of local min 2 29 52 79 70 53 94

6-hump camel 2 29 43 53 59 66 100

Shubert,β = 0 2 94 46 42 36 55 75

Shubert,β = 0.5 2 85 52 40 38 59 66

Shubert,β = 1 2 85 53 27 47 68 76

3 ill-cond min,A = 10 2 26 0 0 75 0 0

3 ill-cond min,A = 102 2 32 0 0 75 0 0

Goldstein-Price 2 15 0 3 51 0 23

Branin 2 17 56 89 72 66 95

Levy-Mont, 1, 10 2 69 53 56 60 72 97

Levy-Mont, 3, 10 2 25 48 68 83 88 100

Small global min 2 21 0 0 75 0 0

Goldstein-Price 2 12 0 0 48 0 0

Rasn 2 83 58 39 61 92 60

Hartman 3 95 87 61 73 51 76

Levy-Mont, 1, 10 3 73 59 53 28 53 96

Levy-Mont, 3, 10 3 26 61 98 99 68 96

Shekel,M = 5 4 98 41 31 97 73 58

Shekel,M = 7 4 96 34 33 94 70 64

Shekel,M = 10 4 98 41 29 91 69 67

Levy-Mont, 1, 10 4 77 54 48 41 53 97

Levy-Mont, 3, 10 4 53 64 91 96 58 90

Rasn 4 70 78 58 29 23 100

Levy-Mont, 2, 10 5 63 49 50 40 56 60

Levy-Mont, 3, 5 5 77 70 100 78 58 87

1 cusp-shaped min 5 93 61 70 86 50 69

Small global min 5 59 31 45 90 40 41

Hartman 6 94 79 85 30 47 46

Levy-Mont, 3, 5 6 74 68 100 64 58 87

Levy-Mont, 3, 5 7 78 76 99 62 49 89

Levy-Mont, 2, 10 8 65 51 58 47 52 63

y Levy-Mont, 2, 10 10 55 52 51 57 49 61

Shekel,M = 10 10 97 76 65 19 39 80

Rasn 10 59 76 71 33 6 99
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We observe that the largest improvement is achieved in high-dimensional prob-
lems (d ≥ 5), where the modified method is almost always better than the orig-
inal UNT algorithm. The difference in performance is less significant in low-
dimensional problems and in a number of problems both methods produce similar
results.

Our explanation for the above performance results is that in the higher-dimen-
sional problems the adaptation process takes place much more slowly than in the
low-dimensional problems, i.e., the conditional distribution at each point changes
more slowly in high-dimensional problems. As a result, in high-dimensional prob-
lems the setting is closer to a non-adaptive case and the merit of the new utility
function more apparent.

REMARK. Note that the goal of the numerical experiments in this section is
to evaluate the impact of using the utility function proposed in this paper when
compared to using the original utility function of theUNT algorithm. Therefore,
we use all test functions for this purpose only. Some of these problems can be
solved more efficiently by methods from other classes of optimization algorithms,
such as multistart or line search.

6. Conclusions

We proposed a new utility function in order to improve the performance of statis-
tical global optimization algorithms. This utility function takes the overall goal of
optimization into account, is not myopic, and is an optimal utility function in a non-
adaptive setting. Our computational results, in the context of an existing statistical
global optimization algorithm, suggest that the advantage of using the new utility
function is more apparent in high-dimensional problems.

The new utility function can also be applied to a number of other optimization
methods that include a selection stage, such as one-dimensional (Kushner, 1964;
Z̆ilinskas, 1992), multi-dimensional (Mockus, 1989) statistical algorithms, adap-
tive partitioning (Pintér, 1996; Tang, 1994; Norkin et al., 1994), global line search
heuristics (Stuckman, 1988; Stuckman and Stuckman, 1993; Streltsov and Much-
nik, 1996). The use of the new utility function in these contexts and the evaluation
of its impact is a subject for future research.
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Appendix A: Test Functions

• 4-order polynomial,d = 1,2
d = 1: f (x) = ((0.25x2

1 − 0.5)x1 + 0.1)x1

d = 2: f (x) = ((0.25x2
1 − 0.5)x1 + 0.1)x1 + 0.5x2

2−10≤ xi ≤ 10, i= 1, . . . , d.
• Goldstein 6-order polynomial,d = 1

f (x) = ((x2
1 − 15)x2

1 + 27)x2
1 + 250

−4≤ xi ≤ 4, i = 1, . . . , d
• Shubert,d = 1,2; β = 0,0.5,1

d = 1: f (x) =∑5
i=1 i cos[(i + 1)x1+ i]

d = 2:

f (x) =β((x1 + 1.4251284)2 + (x2+ 0.8003211)2)+

+
5∑
i=1

i cos[(i + 1)x1 + i] ∗
5∑
i=1

i cos[(i + 1)x2 + i]

−10≤ xi ≤ 10, i= 1, . . . , d
• A function with a single row of local minima,d = 2

f (x) = 0.5(0.1x2
1 + 1− cos(2x1))+ x2

2−15≤ x1 ≤ 25,−5≤ x2 ≤ 15
• 6-hump camel function,d = 2

f (x) = ((x2
1/3− 2.1)x2

1 + 4)x2
1 + x1x2+ 4(x2

2 − 1)x2
2

i − 4≤ xi ≤ 4− i, i = 1, . . . , d
• A function with 3 ill-conditioned minima,d = 2;A = 10,102

f (x) = Ax2
1 + x2

2 − (x2
1 + x2

2)
2+ (x2

1 + x2
2)

4/A

−10i ≤ xi ≤ 10i , i = 1, . . . , d
• Goldstein-Price,d = 2

f (x) =[1+ (x1 + x2+ 1)2(36− 20(x1 + x2+ 1)+ 3(x1 + x2+ 1)2)]
[30+ (2x1 − 3x2)

2(18− 16(2x1 − 3x2)+ 3(2x1 − 3x2)
2)]

−2.5≤ xi ≤ 2, i = 1, . . . , d
• Branin,d = 2

f (x) = [x2− 1.275(x1
π
)2+ 5

π
x1− 6]2 + 10(1− 1

8π ) cos(x1)+ 10
−5≤ x1 ≤ 10, 0≤ x2 ≤ 15

• Levy-Montalvo, type=1,2;R = 10
yi = 1+ (xi − 1)/4, i = 1, . . . , d for type= 1
yi = xi, i = 1, . . . , d for type= 2

f (x) =π/d
[
10 sin2(πy1)+ (yd − 1)2

+
d∑
i=2

(yi−1 − 1)2(1+ 10 sin2(πyi))

]
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−R ≤ xi ≤ R, i = 1, . . . , d
• Levy-Montalvo, type = 3;R = 5,10

f (x) =0.1

[
sin2(3πx1)+ (xd − 1)2(1+ sin2(2πxd))

+
d∑
i=2

(xi−1 − 1)2(1+ sin2(3πxi))

]
−R ≤ xi ≤ R, i = 1, . . . , d

• A function with a small-attraction-region global minimum,d = 2,5

f (x) =
d∑
i=1

x2
i − I

{
d∑
i=2

x2
i + (x1− R)2 < 0.98

}

× (10+ R2)exp

{
−(∑d

i=2 x
2
i + (x1− R)2)

1−∑d
i=2 x

2
i + (x1− R)2

}

d = 2 : R = 100; −1000≤ xi ≤ 1000, i= 1, . . . , d
d = 5 : R = 10; −100≤ xi ≤ 100, i= 1, . . . , d

• Rasn
f (x) = 2

d

∑d
i=1(x

2
i − cos(18xi))

−1≤ xi ≤ 1, i = 1, . . . , d
• Hartmand = 3,6

f (x) = −∑4
i=1 ci exp{−∑d

j=1 aij (xj − pij )2}
d = 3: C = (1,1.2,3,3.2), P = ((0.3689,0.117,0.2673), (0.4699,0.4387,
0.7470), (0.1091,0.8732,0.5547), (0.03815,0.5743,0.8828)),
A = ((3,10,30), (0.1,10,35), (3,10,30), (90.1,10,35)).
d = 6: C = (1,1.2,3,3.2), P = ((0.1312,0.1696,0.5569,0.0124,0.8283,
0.5886), (0.2329,0.4135,0.8307,0.3736,0.1004,0.9991), (0.2348,0.1451,
0.3522,0.2883,0.3047,0.6650), (0.4047,0.8828,0.8732,0.5743,0.1091,
0.0381)),A = ((10,3,17,3.5,1.7,8), (0.05,10,17,0.1,8,14), (3,3.5,1.7,
10,17,8), (17,8,0.05,10,0.1,14))
0≤ xi ≤ 1, i = 1, . . . , d

• Shekel,d = 4;M = 5,7,10
f (x) =∑M

i=1
1

(x−ai)(x−ai)T+ci
C = (0.1,0.2,0.2,0.4,0.4,0.6,0.3, 0.7, 0.5,0.5), A = ((4,4,4,4),
(1,1,1,1), (8,8,8,8), (6,6,6,6),(3,7,3,7), (2,9,2,9), (5,5,3,3),
(8,1,8,1), (6,2,6,2), (73.6,7,3.6))
0≤ xi ≤ 10, i= 1, . . . , d

• A single cusp-shaped min,d = 5
f (x) = (∑d

i=1 ix
2
i )

1/4

−20000≤ xi ≤ 10000, i= 1, . . . , d
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